Quantum Gravitational Force Between Polarizable Objects.
نویسندگان
چکیده
Since general relativity is a consistent low energy effective field theory, it is possible to compute quantum corrections to classical forces. Here we compute a quantum correction to the gravitational potential between a pair of polarizable objects. We study two distant bodies and compute a quantum force from their induced quadrupole moments due to two-graviton exchange. The effect is in close analogy to the Casimir-Polder and London-van der Waals forces between a pair of atoms from their induced dipole moments due to two photon exchange. The new effect is computed from the shift in vacuum energy of metric fluctuations due to the polarizability of the objects. We compute the potential energy at arbitrary distances compared to the wavelengths in the system, including the far and near regimes. In the far distance, or retarded, regime, the potential energy takes on a particularly simple form: V(r)=-3987ℏcG^{2}α_{1S}α_{2S}/(4πr^{11}), where α_{1S}, α_{2S} are the static gravitational quadrupole polarizabilities of each object. We provide estimates of this effect.
منابع مشابه
Perturbative Approach to Calculating the Correlation Function of bi-isotropic Metamaterials
A bi-isotropic magneto-electric metamaterials is modeled by two independent reservoirs. The reservoirs contain a continuum of three dimensional harmonic oscillators, which describe polarizability and magnetizability of the medium. The paper aimed to investigate the effect of electromagnetic field on bi-isotropic. Starting with a total Lagrangian and using Euler-Lagrange equation, researcher cou...
متن کاملEinführung in die Programmierung für Physiker – WS 2013 / 14 – Marc Wagner
≪The study of gravity has led to many revolutions in science, from Newtonian Dynamics to General Relativity to Quantum Field Theory. Despite these advances, however, gravity continues to puzzle scientists. In the 17 century, Sir Isaac Newton was able to successfully model the gravitational force on a macroscopic scale, but in the succeeding 400 years physicists have made little progress in unde...
متن کاملAdvanced information on the Nobel Prize in Physics, 5 October 2004
We know of two fundamental forces on the macroscopic scale that we experience in daily life: the gravitational force that binds our solar system together and keeps us on earth, and the electromagnetic force between electrically charged objects. Both are mediated over a distance and the force is proportional to the inverse square of the distance between the objects. Isaac Newton described the gr...
متن کاملDeveloping the Polarizable Protein Force Field: Focus on Amino Acid Residues
Polarizable force field has been successfully used in molecular modeling for years, especially in biological and protein simulations. In this research thesis, development of a new polarizable force field ―POSSIM (POlarizable Simulations with Second order Interaction Model) involving electrostatic polarization is described and parameters for several protein residues were produced. In this resear...
متن کاملPolarizable and nonpolarizable force fields for alkyl nitrates.
Quantum-chemistry-based many-body polarizable and two-body nonpolarizable atomic force fields were developed for alkyl nitrate liquids and pentaerythritol tetranitrate (PETN) crystal. Bonding, bending, and torsional parameters, partial charges, and atomic polarizabilities for the polarizable force field were determined from gas-phase quantum chemistry calculations for alkyl nitrate oligomers an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 116 15 شماره
صفحات -
تاریخ انتشار 2016